

(I)

Modelling of fluid-structure interactions for wind energy applications

Axelle Viré¹, J. Xiang², J. Spinneken³, C.C. Pain²

a.c.vire@tudelft.nl

¹ Wind Energy Group, Faculty of Aerospace Engineering, TU Delft
 ² Applied Modelling and Computation Group, Imperial College London
 ³ Civil and Environmental Engineering, Imperial College London

Vortical structures and wall turbulence: In honour of Paolo Orlandi 20 September 2014

(I)

Motivation

Placing offshore renewable energy devices on fixed and floating supports (deep sea)

Scope of the project:

- Couple two finite-element models for modelling fluid-structure interactions
- Apply them to the various components of the offshore wind turbine

(日)

Outline

- 1. General formalism
- 2. Equations of motion
- 3. Coupling algorithm
- 4. Results
 - Hydrodynamics: wave-pile interactions
- 5. Conclusion

(a)

1. General formalism

(a)

1. General formalism

- Conservative projection scheme at a discrete level
- Integration in a Navier-Stokes fluid/wave model

2. Equations of motion

Fluid-dynamics model: Fluidity-ICOM

$$\bar{\nabla} \cdot \bar{u} = 0$$

$$\rho_f \frac{\partial \bar{u}}{\partial t} + \rho_f \left(\bar{u} \cdot \bar{\nabla} \right) \bar{u} = -\bar{\nabla}p + \bar{\nabla} \cdot \bar{\bar{\tau}} + \bar{F}_f$$

$$(\rho_f = \text{constant})$$

▶ The equations are solved for a monolithic velocity: $\bar{u} = \alpha_f \bar{u}_f + \alpha_s \bar{u}_s$

An additional force accounts for the presence of the solids:

$$\bar{F}_f = \beta \left(\alpha_s \bar{u}_s - \alpha_s \bar{u} \right) = \bar{F}_2 - \bar{F}_1 \qquad \qquad \beta = \operatorname{fct}\left(\frac{\rho_f}{\Delta t}, \frac{\nu}{L^2}\right)$$

Solid-dynamics model: Y3D-Femdem

$$\frac{D}{Dt}(\rho_s \bar{u}_s) = \bar{\nabla} \cdot \bar{\bar{\tau}}_s + \bar{F}_s \qquad \qquad \bar{F}_s = \bar{F}_1 - \bar{F}_2$$

Image: A matrix and a matrix

Conservation
$$\int_V F_f dV = -\int_{V_s} F_s dV_s$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

3. Coupling algorithm

Viré et al., Ocean Dyn. 62 (2012); Viré, Xiang, Pain, submitted to Phil. Trans. R. Soc. A (2014)

<ロ> <同> <同> < 同> < 同> < 同> < □> <

2

3. Coupling algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Coupling algorithm

Viré et al., Ocean Dyn. 62 (2012); Viré, Xiang, Pain, submitted to Phil. Trans. R. Soc. A (2014)

(日)

3. Coupling algorithm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. Coupling algorithm

Viré et al., Ocean Dyn. 62 (2012); Viré, Xiang, Pain, submitted to Phil. Trans. R. Soc. A (2014)

Imperial College London

Hydrodynamics: wave-pile interaction with regular waves

- Wave modelling with CFD
 - Maguire, PhD. Edinburgh, 2010
 - Viré et al., Proceedings of ISOPE 2013
- The flow is inviscid
- Regular waves are generated at the inlet:

A D > A B > A B > A B >

ak = 0.001 where $gk \tanh(kh) = (2\pi T)^2$ and T = 1

- The water depth is intermediate between shallow and deep, i.e. $h/\lambda_0 = 0.45$ ($\lambda_0 = 2\pi g/\omega^2$)
- A mixed finite-element pair is used: $P1_{DG}$ in velocity and P2 in pressure
- > The mesh has approximately 30,000 nodes in the x-y plane and is extruded vertically in 7 layers
- Defined-body and immersed-body methods are compared
- Reference: linear diffraction theory (MacCamy and Fuchs, Tech Memorandum, US Beach Erosion Board, 1954)

Imperial College

Hydrodynamics: wave-pile interaction with regular waves

Imperial College

Hydrodynamics: wave modelling for irregular waves

Dr Axelle Viré Modelling of fluid-structure interactions for wind energy applications

Imperial College London

Hydrodynamics: dynamics of a floating pile

(I)

5. Conclusion

Coupling between two finite-element models based on unstructured meshes

Validation on flows of fundamental interest in offshore engineering

Next steps

Increase the level of turbulence... in the wake of Paolo Orlandi

Acknowledgements

European Commission: FP7 Marie-Curie Career Integration Grant

All the best to Paolo Orlandi