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Motivation

Placing offshore renewable energy devices on fixed and floating supports (deep sea)

Photo: Trude Refsahl/Statoil     

Hywind Spar-buoy  
concept 

Photo: SkySails Power

Scope of the project:

I Couple two finite-element models for modelling fluid-structure interactions
I Apply them to the various components of the offshore wind turbine
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1. General formalism
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2. Equations of motion

Fluid-dynamics model: Fluidity-ICOM

Solid-dynamics model:  Y3D-Femdem

The equations are solved for a monolithic velocity: ū = ↵f ūf + ↵sūs

r̄ · ū = 0

An additional force accounts for the presence of the solids:
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3. Coupling algorithm
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Viré et al., Ocean Dyn. 62 (2012);    Viré, Xiang, Pain, submitted to Phil. Trans. R. Soc. A (2014)
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3. Coupling algorithm
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3. Coupling algorithm
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4. Results
Hydrodynamics: wave-pile interaction with regular waves

Wave modelling with CFD!!
- Maguire, PhD. Edinburgh, 2010!
- Viré et al., Proceedings of ISOPE 2013

Regular waves are generated at the inlet:

A mixed finite-element pair is used:            in velocity and       in pressureP1DG P2

Defined-body and immersed-body methods are compared

ak = 0.001 gk tanh(kh) = (2⇡T )2where and T = 1

The water depth is intermediate between shallow and deep, i.e. h/�0 = 0.45 (                     )�0 = 2⇡g/!2

Reference: linear diffraction theory (MacCamy and Fuchs, Tech Memorandum, US Beach Erosion Board, 1954)

The mesh has approximately 30,000 nodes in the x-y plane and is extruded vertically in 7 layers
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The flow is inviscid
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4. Results
Hydrodynamics: wave-pile interaction with regular waves
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Modelling of fluid-structure interactions for wind energy applications



4. Results
Hydrodynamics: wave modelling for irregular waves
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Irregular waves are generated at the inlet

3 amplitudes of the focused event are considered: 

Asumkp = 100.54 Asumkp = 502.65 Asumkp = 1005.3

where kp corresponds to the peak in Jonswap spectrum

Reference: second-order calculation

xf = 10h tf = 16TThe maximum amplitude occurs at: and

(Sharma and Dean, Society of Petroleum Engineers Journal, 1981)
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4. Results
Hydrodynamics: dynamics of a floating pile
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5. Conclusion

I Coupling between two finite-element models based on unstructured meshes
I Validation on flows of fundamental interest in offshore engineering

Next steps

I Increase the level of turbulence... in the wake of Paolo Orlandi
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