

Analysis of Turbulent Boundary Layers over Moving Surfaces

W. Schröder, W. Jessen, M. Klaas, M. Meinke

Institute of Aerodynamics, RWTH Aachen University 52062 Wüllnerstr. 5a, Aachen, Germany

- Motivation
- State of the Art
- Methods
 - * numerical
 - * experimental

Coming Up

- Results
 - ***** smooth surface
 - * riblet surface
- Conclusion

Motivation / 1

- passive means: riblets \rightarrow DR \leq 10%

(Exp: Walsh, Bechert etc.) (Num: Choi, Karniadakis, Goldstein, Jimenez, etc.)

- active means: in-plane spanwise wall motion ($Re_{\tau} \le 100$)

internal flow (channel) $\rightarrow 10\% \leq DR \leq 45\%$ (wall oscillation, rotating discs, Lorentz forces ...; Quadrio, Choi, Ricco, Leschziner, Touber etc.) external flow $\rightarrow DR \leq 15\%$ (electroactive polymers, plasma actuators ...; Choi, Di Cicca, Gouder, Laadhari etc.)

- active means: spanwise transversal wall motivation ($Re_{\tau} \le 750$)

internal flow (channel) \rightarrow DR \leq 13% (Tomiyama, Fukagata etc.) external flow \rightarrow DR \leq 13% (Itoh, Tamano, Klumpp etc.)

Summary:

- no combination of riblets and moving surfaces exists
- combination seems natural due to the similarity in the drag reducing mechanism
- combination possible if aluminum surface can be actuated
- actuators with high strength to displace and retract the aluminum surface are necessary

- Large-eddy simulation using the MILES (monotone integrated LES) approach
- Discretization of the inviscid terms by a mixed centered-upwind AUSM (advective upstream splitting method) scheme at second-order accuracy
- Second-order centered discretization of the viscous terms
- Temporal integration by a second-order explicit 5-stage Runge-Kutta method

Numerical Method / 2

computational domain

- generation of a turbulent boundary layer via a rescaling method
- periodic in the spanwise direction
- sponge layer to damp numerical reflections
- no-slip condition at the wall

Numerical Method / 3

$$y(z,t) = \hat{y} \sin\left(\frac{2\pi}{\lambda_z}z - \frac{2\pi}{T}t\right)$$

low-speed wind tunnel, flat plate, actuated surface, PIV and μPTV setup

Experimental Method / 2

actuated surface plus riblet surface

Experimental Method / 3

transition from riblet to smooth surface and measurement location

Experimental Method / 4

electromagnetic actuators 20mm apart; 10 actuated bars are aligned with the streamwise direction (Kaparaki et al., submitted to *Mechatronics*)

Results: Smooth Surface / 1

Re_{θ}	A^+	λ^+	C^+	T^+	$Re_{ au,0}$	A_{0}^{+}	λ_0^+	C_0^+
1000	50	500	6.25	80	540	43.5	506	6.03
2000	50	500	6.25	80	906	53.5	536	5.84
5000	50	500	6.25	80	1908	55.8	550	5.84
7000	50	500	6.25	80	2250	69.4	598	5.79

flow parameters, Re_{θ} = momentum based Reynolds number, Re_{τ} : friction velocity based Reynolds number, A⁺: amplitude, λ^+ : wave length, c⁺: phase speed, T⁺: period

turbulent structures over the actuated surface visualized by λ_2 -contours

DR : ratio of the difference of the non-ac. wss and the ac. wss to the non-ac. wss

Phase-averaged profiles of the streamwise velocity u, the symbols indicate the crest (\blacktriangle) and the trough (∇), the non-actuated configurations are denoted by lines at --- (Re_{θ} = 1000), —— (Re_{θ} = 2000), ·--- (Re_{θ} = 5000), ……… (Re_{θ} = 7000), (left) absolute coordinate, (right) relative wall distance.

10

(y-y_{wall})u_{r,f}/v

50

30

10³

100

10¹

10²

yu, /v

Contours of the phase-averaged production term $P_{ij} = -\overline{u'_i u'_j} \partial \overline{u_i} / \partial x_j$

Drag reduction as a function of the Reynolds number based on the friction velocity Re_{τ} , $---\cdot$ turbulent channel flow from [28] for $10^2 \le \text{Re}_{\tau} \le 10^3$, $--\cdot\cdot$ current flat plate turbulent boundary layer flow 540 $\le \text{Re}_{\tau} \le 2250$.

ÜLICHResults: Smooth Surface / 8 FORSCHUNGSZENTRUM

Contours of the phase-averaged production term $P_k = -\overline{u'_l u'_l} \partial \overline{u_l} / \partial x_i$ 20

Results: Smooth Surface / 9

12		8	★ '——'	Re,=2000	Reynolds number	A^+	S_{ac}/S_{nc}	$c_{f,ac}/c_{f,na}$	$\Delta c_D ~[\%]$
10	·	_/		- Re _e =5000 Re _e =7000-	$Re_{\theta}=2000$	30	1.03451	0.88	9.3
		1	X		$\mathrm{Re}_{\theta}=2000$	50	1.09204	0.81	11.4
8	:	<u> </u>	$-\lambda$		$\mathrm{Re}_{\theta}=2000$	70	1.17120	0.80	6.6
8			7		$Re_{\theta}=5000$	30	1.03467	0.95	1.8
° °					$\mathrm{Re}_{\theta}=5000$	50	1.09246	0.89	3.0
4					$\mathrm{Re}_{\theta}{=}5000$	70	1.17197	0.85	0.6
			a I		$\mathrm{Re}_{\theta}=7000$	30	1.03464	0.96	0.6
2		2			$\mathrm{Re}_{\theta} = 7000$	50	1.09240	0.91	1.0
c		.0			$\mathrm{Re}_{\theta}{=}7000$	70	1.17185	0.84	1.8
U U	0 20	40	60 8	0 100					
			A+						

drag reduction DR = Δc_D versus A⁺

+ :
$$Re_{\theta} = 2000$$

: $Re_{\theta} = 5000$
: $Re_{\theta} = 7000$

Friction coefficient ratio $c_{f,ac}/c_{f,na}$ scaled by $Re_{\tau}/Re_{\tau,2000}$ versus A⁺ scaled by $Re_{\tau,2000}/Re_{\tau}$

+ : $Re_{\theta} = 2000$: $Re_{\theta} = 5000$: $Re_{\theta} = 7000$

RNTH Aach

Result: Riblet Surface / 1

test paramete	parameter range				norm	normalized parameter range			
velocity	$U_{\infty} = 3$	$U_{\infty} = 8 \text{ m/s}, 16 \text{ m/s}$				$Re_{\theta} = 1200, 2080$			
excitation fre	f= 81	<i>f</i> = 81 Hz				T^{*} = 110, 380			
wavelength	$\lambda = 1$	$\lambda = 160 \text{ mm}$				λ^+ = 3862, 7170			
amplitude	A=0.	A = 0.25 mm, 0.3 mm, 0.375 mm				$6 \le A^+ \le 17$			
riblet spacing	s=1	s = 1 mm				$24 \le s^+ \le 45$			
riblet height		h=0.	h = 0.3 mm				$7 \le h^+ \le 13$		
	Re_{θ}		h^+	T^{+}	λ^+	A^+	DR [%]		
	1200	24	7	110	3862	0	4.7		
	1200	24	7	110	3862	6	4.1		
	1200	24	7	110	3862	7	5.8		
	1200	24	7	110	3862	9	9.4		
	2080	45	13	380	7170	0	0.7		
	2080	45	13	380	7170	11	0.9		
	2080	45	13	380	7170	14	2.2		
	2080	45	13	380	7170	17	2.7		

flow parameters, riblet parameters, wave parameters

$$A^+=\,Au_{ au}/
u$$
 , $\lambda^+=\,y\,u_{ au}/
u$, $T^+=\,u_{ au}^2/(f\cdot
u)$

Result: Riblet Surface / 2

comparison of mean streamwise velocity distribution in the viscous sublayer

Result: Riblet Surface / 3

rms-value of the wall-normal velocity fluctuations $Re_{\theta} = 1200$ (left) and $Re_{\theta} = 2080$ (right)

drag reduction $DR = \Delta \tau / \tau_0$ of a riblet structure with and without actuation

- impact of spanwise transversal surface waves on drag reduction was experimentally and numerically analyzed for turbulent flat plate boundary layers
- the investigation considered smooth and riblet surfaces
- new actuators were developed to excite the aluminum surface (Kaparaki et al., submitted to *Mechatronics*)
- parameter range: $1000 \le \text{Re}_{\theta} \le 7000$, $0 \le \text{A}^+ \le 70$, $\lambda^+ = \text{const.}$, T⁺ = const, $0 \le \text{s}^+ \le 45$

- at varying Re_{θ} and $\lambda^+ = \text{const.}$, $T^+ = \text{const.}$, $A^+ = \text{const.}$ DR reduces at higher Re_{τ} (~ Re_{τ}^{-1})

Conclusion / 2

- at varying A⁺ and λ^+ = const, T⁺ = const, Re_{θ} = const, DR possesses a maximum due to the increased surface area
- the riblet surface enhances the drag reducing effect
- the transversal wall motion reduces the dimensional sensitivity of the riblets to the flow parameters