On the forcing term in the DNS of a turbulent channel flow

Maurizio Quadrio¹, Bettina Frohnapfel², Yosuke Hasegawa³

¹Politecnico di Milano ²Karlsruhe Institute of Technology ³University of Tokyo

Rome, Sept 20, 2014 My best wishes to P.O.!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The need for a forcing term in DNS

- NS equations alone cannot push fluid through the duct
- Forcing term must be added to mimick pump / gravity / etc

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Forcing term is "arbitrary"

 Popular choices are constant flow rate (CFR) and constant pressure gradient (CPG)

(ロ) (同) (三) (三) (三) (○) (○)

- Often equivalent on physical grounds
- Known difference on practical grounds
- Different realizations, statistics are the same

CFR or CPG?

Pre-determines the global energy budget for drag reduction

- Potential source of confusion
- Concerns both DNS and experiments
- CFR: pumping power is reduced with drag reduction
- CPG: pumping power is increased with drag reduction

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A further option: CPI The Money-vs-Time plane (JFM 2012, 2014)

Does the choice of the forcing term affect the statistics of the same flow?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Finding the answer

 Large spatio-temporal DNS channel databases for CFR, CPG, CPI

(ロ) (同) (三) (三) (三) (○) (○)

- DNS code: mixed-discretization solver
- Channel flow at $Re_{ au} \approx 200$
- $L_x \times L_y \times L_z = 4\pi h \times 2h \times 2\pi h$
- $\Delta x^+ = 9.6 \ \Delta z^+ = 4.8 \ \Delta y^+ = 0.8 4.9$
- Sample size: $T^+ = 100,000$ at $\Delta t^+ = 1$

No obvious changes (obviously!)

forcing term	flow driven with	measured
CFR	<i>Re_b</i> = 3173	$Re_{\tau} = 199.01$
CPG	$Re_{ au}=200$	$Re_{ au} = 199.89$
CPI	$Re_{\Pi}=6500$	$Re_{ au} = 199.49$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Focus on wall friction Comparison with Lenaers et al, PoF 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

An in-depth look

Space-time autocorrelation of wall friction Red: CFR; black: CPG; green: CPI

~ ~ ~ ~ ~

э

Differences appear in Lagrangian frame only! One-dimensional space or time correlations are mostly unaffected

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Statistical significance?

Link to vortical structures?

Integral timescale of "lagrangian" correlation: lifetime of near-wall structures

Choice of forcing term does leave a statistical footprint

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Most evident (so far) in lagrangian frame
- Relevance?

A 18-years-old pair of skies

Gratefully remembering my first workshop in Aussois (1997), organized by P.O.

・ロト ・聞ト ・ヨト ・ヨト

ъ