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 Inner and Outer: attached wall-eddies 

Townsend 1976 

“Bottom-up”: Adrian et al. 2000 “Top-down”: Hunt & Morrison 2000 

•  packets carry roughly half the 
  turbulence kinetic energy and shear stress 
•  fill most of the boundary layer 
•  reach to the wall 
•  at least 20δ in length – “meandering” 

Richard Scorer 



Motivation 
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"   Inner – Outer Interaction top-down and bottom-up 
"   Two imposed lengthscales:         – how can their effects 

be separated? 

"   Single velocity scale,    , but range of convection 
velocities suggests a range of timescales. 

"   Shear timescale:  

"   Blocking timescales nonlinear:  

"   Impermeability constraint – role of pressure? 

"   Measurements in a rapidly distorted boundary layer 
with freestream turbulence: linearised wall turbulence. 
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Grit k+ ≈ 200 

Birch & Morrison 2011 



Blocking as a linear effect 
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•  v-component blocked at wavenumber  
•        implies hierarchy of self-similar, non-interacting 

attached wall eddies and so linear superposition: 
 
 

•  Spectra:  
•  Integrating       for                                  gives: 
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Blocking 

"   Does top-down effect lead to: 
Ø  “modulation” of near-wall motion (Hutchins & Marusic 2007, 

Mathis et al. ‘09, ‘11, ‘13) 

Ø  streamwise vortices (Hunt & Morrison 2000) and hence – 

Ø  plane (oblique) waves (Sirovich 1990, Carpenter 2007)? 

"   What is the role of wall-normal velocity and pressure 
fluctuations – “Anti-splats” as well as Splats (local surface 
stagnation points)? 

 

"   Viscosity alters the balance between A and S: pressure-
strain effects transfer of energy from v – component to u 
and w (Perot & Moin 1995) 

shear-free boundary  S A S 



A useful theory for Inner-Outer Interaction?  

"   Landahl (’93, ’90, ‘75): initial disturbance scales           with timescales: 
 shear interaction          << viscous                  << nonlinear         . 

"   Large and small-scale decomposition: 
"   Small scale,     ,large scale,     where  

"   To first order in ε, large-scale and small-scale fields may be represented 
separately by the same equations: 

 

 

"   q, r nonlinear source terms (turbulent stresses) significant only in local 
regions: “intense small-scale turbulence of an intermittent nature” 
interspersed with “laminar-like unsteady motion of a larger scale”. 
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Synopsis 

 

"   A full-domain linear controller that relaminarises 
turbulent channel flow 

"   How does this work? 

"   Importance of pressure fluctuations – Batchelor, 
Landahl & Townsend (BLT) 

"   Comparison of timescales 

"   Measurements in a rapidly distorted boundary 
layer 

Reτ ≤ 400



Turbulent channel flow 

"   Reτ = 80, 100, 180, 300: Domain 

"   Reτ = 400: Domain 

"   Channelflow 0.9.15 (Gibson et al. ‘08) 

"   Full-domain sensing, actuation on v 

"   Control focuses on vU’ 

"   Forcing bandwidth progressively increased 

"   Details for Reτ = 400, kx, kz ≤ 20 

"   & at 
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Reτ = 180 
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Reτ = 180 (Uncontrolled)
Reτ = 180 (kx, kz ≤ 8)
Reτ = 180 (kx, kz ≤ 9)
Reτ = 180 (kx, kz ≤ 20)
Laminar F low
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Reτ = 400 
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Reτ = 400 (Uncontrolled)
Reτ = 400 (kx, kz ≤ 14)
Reτ = 400 (kx, kz ≤ 16)
Reτ = 400 (kx, kz ≤ 18)
Reτ = 400 (kx, kz ≤ 20)
Reτ = 400 (kx, kz ≤ 40)
Laminar F low
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Mean square forcing: 
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Rate of decay 
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Production and dissipation 
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Pressure gradient fluctuations 

•  High Reynolds numbers: local isotropy and negligible 
viscous diffusion 

•  Mean-square acceleration becomes 

•  where 

•  Therefore, even the smallest scale motion is driven by 
pressure gradients and not by viscous forces. 
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Uncontrolled turbulent channel flow 
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     : t = 50 
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Turbulent channel flow pressure statistics 

•  Spatial intermittency: Sp ≈ 0, Fp ≈ 6 
•  Green’s function integral shows 

that contribution to wall pressure 
comes mostly from near-wall 
velocity field, both rapid and slow 
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BLT theory 

•  Sublayer as a waveguide: primarily for p and v 
•  u and w also wave-like but including convected 

eddy behaviour 
•  Description of both large & small scales – Inner-

outer interaction? 
•  Pressure sources can ‘trigger’ bursts near wall = 

short shear – interaction timescale 
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Viscous periods 

  secondary instability, 
nonlinear, resonance? 

       viscous waves, 
primarily in p and v? 



Rolling road to generate 
shearless boundary layer  

Stationary 
Tunnel floor 

Measurement 
Location 

Variable ratio of shear timescale to turbulence timescale 

Rapidly distorted boundary layer 
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Freesteam turbulence with wall shear 



Static pressure fluctuations 



Static pressure fluctuations: spectra 

f -1 



Conclusions 

"   Linear full-domain forcing via vU’ at low wavenumbers 
attenuates turbulent channel flow 

"   Control acts on v–component field and hence pressure 
field via rapid source term of Poisson equation  

"   Qualitative support for Landahl’s theory: inner-outer 
interaction effected by linear shear-interaction on short 
timescales 

"   Relevance of Landahl’s theory for linear control lies in the 
fact that, over the short time for which the controller is 
effective, the longer turbulence time scale is not significant 

"   Shear timescale effective because of pressure – linear 
source term – an RDT approximation 

"   Rapidly sheared boundary layer with variable shear and 
nonlinear timescales 
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