What can we gain by Doing Turbulence Wrong?

Javier Jiménez

School of Aeronautics, Madrid

TBL: Re $_{\tau}=1800, \mathbf{u}^{\mathbf{+}}=\mathbf{2}$
J.A. Sillero

Doing it Dight (DNS): Streaks and Vortices in the Log. Iayer

Low velocity

streaks

Vortices
Channel: $\operatorname{Re}_{\tau}=4200$. A. Lozano-Durán

Streaks and Reynolds Stress in the Logarithmic layer

${ }^{\circ}$ Attached ${ }^{\circ 0}$ Eddies in Wall Turbulence

Sweeps + Ejections
Channel: $\mathrm{Re}_{\boldsymbol{\tau}}=2000$

Lozano-Duran \& J (2014)

${ }^{60}$ Attached ${ }^{09}$ Sweens and Ejections

Self-Similar Eddies are Good

Self-Similar Eddies are Good

$\mathbf{v}_{\mathrm{T}}=\mathbf{u}_{\tau} \mathbf{L} \sim \mathbf{u}_{\tau} \mathbf{y}$
$\mathbf{u}_{\tau}{ }^{2}=\mathbf{v}_{\mathrm{T}} \partial \mathbf{U} / \partial \mathbf{y}$
$\mathrm{U} \sim \log (\mathrm{y})$

Momentum Transfer is self-similar

Therefore

DNS is Good,

because it makes people happy

The cynical point of view

Do we really need so many riches?

1.-Do you really need to be aittached?

Ejections

Channel: $\mathrm{Re}_{\boldsymbol{\tau}}=\mathbf{4 2 0 0}$

Homogeneous Shear: $\mathbf{R e}_{\boldsymbol{\lambda}}=\mathbf{1 0 0}$

Sweeps + Ejections

Dong, Sekimoto \& J (2013), Lozano-Duran \& J (2014)

1.-Do you really need to be attached! (no) Homogeneous Shear Turbulence

Ejections
Channel: $\mathbf{R e}_{\boldsymbol{\tau}}=\mathbf{4 2 0 0}$
Sweeps + Ejections

Homogeneous Shear: $\mathbf{R e}_{\lambda}=100$

Dong, Sekimoto \& J (2013), Lozano-Duran \& J (2014)

2.-Do we Need Nonlinearity:

Yes, of course, but

Fully Nonlinear NS

Constantinou, Lozano-Duran, Nikolaidis, Farrell, Ioannou \& J. (2014)

Do we Need Nonlinearity:

Yes, of course, but

Reduced Nonlinearity NS

Constantinou, Lozano-Duran, Nikolaidis, Farrell, Ioannou \& J. (2014)

Do we Need Nonlinearity:

Yes, of course, but
 $\mathbf{R e}_{\boldsymbol{\tau}}=\mathbf{9 5 0}$

Reduced Nonlinearity NS

Constantinou, Lozano-Duran, Nikolaidis, Farrell, Ioannou \& J. (2014)

Do we Need Nonlinearity!

Yes, of course, but $\mathbf{R e}_{\tau}=950$

Reduced Nonlinearity NS

Constantinou, Lozano-Duran, Nikolaidis, Farrell, Ioannou \& J. (2014)

Do we Need Nonlinearity:

Yes, of course, but

$$
\mathbf{R e}_{\tau}=\mathbf{9 5 0}
$$

Reduced Nonlinearity NS

Constantinou, Lozano-Duran, Nikolaidis, Farrell, Ioannou \& J. (2014)

3.-Do we need anything along x:

Yes, of course

Dowe need anything along x:

Yes, of course but not much

ONE streamwise Fourier mode!

Summary

Wall-bounded turbulence is full of

 fascinating structures (about which we know a lot)
And complex mechanisms to maintain them

(about which we know much less)
Many of which are really "optional"

A Diece of Advice (to Daolo)

DNS

has taught us a lot about wall turbulence
but, Paolo

A Diece of Advice (to Daolo)

DNS

has taught us a lot about wall turbulence

but, Paolo

you are still in time to see the light, and

If you really want to understand turbulence

A Diece of Advice (to Daolo)

DNS

has taught us a lot about wall turbulence

> but, Paolo
you are still in time to see the light, and

If you really want to understand turbulence you have to do everything again (wrong)

