What can we gain by Doing Turbulence Wrong?

Javier Jiménez

School of Aeronautics, Madrid

Doing it Right (DNS): Streaks and Vortices in the Log. layer

Streaks and Reynolds Stress in the Logarithmic layer

Attached Eddies in Wall Turbulence

Sweeps + Ejections Channel: $Re_{\tau}=2000$

Lozano-Duran & J (2014)

Attached Sweeps and Ejections

Self-Similar Eddies are Good

Self-Similar Eddies are Good

$$v_{T} = u_{\tau} L \sim u_{\tau} y$$
$$u_{\tau}^{2} = v_{T} \partial U / \partial y$$
$$U \sim \log(y)$$

Therefore

DNS is Good,

because it makes people happy

The cynical point of view

Do we really need so many riches?

1.-Do you really need to be attached?

Dong, Sekimoto & J (2013), Lozano-Duran & J (2014)

1.-Do you really need to be attached?(no) Homogeneous Shear Turbulence

Ejections

Dong, Sekimoto & J (2013), Lozano-Duran & J (2014)

Yes, of course, but 5 k_x=0 4 3 2 1 **Fully Nonlinear NS**

Reduced Nonlinearity NS

Reduced Nonlinearity NS

Reduced Nonlinearity NS

3.-Do we need anything along x?

Yes, of course

Do we need anything along x?

Yes, of course but not much

Summary

Wall-bounded turbulence is full of fascinating structures (about which we know a lot)

And complex mechanisms to maintain them (about which we know much less)

Many of which are really "optional"

A Piece of Advice (to Paolo)

DNS

has taught us a lot about wall turbulence

but, Paolo

A Piece of Advice (to Paolo)

DNS

has taught us a lot about wall turbulence but, Paolo you are still in time to see the light, and

If you really want to understand turbulence

A Piece of Advice (to Paolo)

DNS

has taught us a lot about wall turbulence but, Paolo you are still in time to see the light, and

If you really want to understand turbulence you have to do everything again (wrong)