#### Introduction

Solar wind statistics from V2 data (year 1979, days 1–180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# Turbulence in the solar wind, spectra from Voyager 2 data

F. Fraternale<sup>1</sup>, L. Gallana<sup>1</sup>, M. Iovieno<sup>1</sup>, J.D. Richardson<sup>2</sup>, M. Opher<sup>3</sup>, D. Tordella<sup>1</sup>

<sup>1</sup>Dipartimento di Ingegneria Meccanica e Aerospaziale Politecnico di Torino <sup>2</sup>Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology <sup>3</sup>Astronomy Department, Boston University

> Vortical Structures & Wall Turbulence, Prof. Orlandi Anniversary

Frascati, 19–20 September 2014

SOR

# Table of contents

ъ

Sar

### 1. Introduction



- 2. Solar wind statistics from V2 data (year 1979, days 1–180)
- 3. Spectral analysis: methodology and validation
- 4. Spectral analysis: synthetic turbulence
- 5. Spectral analysis: V2 velocity and mag. field data
- 6. Rybicki & Press prediction method
- 7. Conclusions

Voyager 2 Interstellar Mission

Turbulence in the solar wind, spectra from Voyager 2 data

### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



- Voyager 2 is flying now at 15.6km/s, 104.7 AU from Earth, in the Heliosheath, the outermost layer of the heliosphere where the so-lar wind is slowed by the pressure of interstellar gas
- *Termination Shock* was passed on Sep 5, 2007



source: M. Opher et al.





A turbulence hypothesis for the magnetic field in the *Heliosheath* M. Opher et al, ApJ 734, 2011 "Is the magnetic field in the Heliosheath laminar or a turbulent sea of bubbles?"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



L.L. Orionis colliding with the Orion Nebula. Hubble Space Telescope, February 1995 (Credit: NASA, The Hubble Heritage Team (STScI/AURA))

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



Year 1979: V and B data



Velocity and magnetic field data from V2, period 1979 (DOY 1–180). RTN heliographic reference frame.

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



### Year 1979: V and B data



Sac

### Year 1979: V and B data

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V: velocity and mag. field data

Rybicki &Press predictior method

Conclusions





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### Year 1979: V and B moments and PDFs

|       | $\mu$ | $\sigma^2$ | old Sk | Ku   |
|-------|-------|------------|--------|------|
| $V_R$ | 454   | 1893       | 0.43   | 3.41 |
| $V_T$ | 3.21  | 252.9      | -0.99  | 7.35 |
| $V_N$ | 0.51  | 250.3      | -0.36  | 5.80 |
| $B_R$ | -0.04 | 0.173      | 0.53   | 6.71 |
| $B_T$ | 0.06  | 0.85       | -0.72  | 10.2 |
| $B_N$ | 0.10  | 0.34       | -0.24  | 7.65 |

units: km/s, nT

| $\langle n_i \rangle ~({\rm cm^{-3}})$ | 0.23                 |
|----------------------------------------|----------------------|
| $\langle T \rangle$ (K)                | 27038                |
| $oldsymbol{eta}_p$                     | 0.225                |
| $V_A ~({\rm km/s})$                    | 47.7                 |
| $c_s ~({\rm km/s})$                    | 19.3                 |
| $f_{ci}$ (Hz)                          | $1.49 \cdot 10^{-2}$ |
| $f_{pi}$ (Hz)                          | 101                  |
| f* (Hz)                                | 0.44                 |
| $r_i$ (km)                             | 158                  |
| $\lambda_D$ (m)                        | 5.5                  |



normalized PDF of V and B - comparison with a Normal distribution. Evidence of anisotropy A □ > A □ > A □ > A □ > A

Sac

Solar wind statistics from V2 data (vear 1979. days 1-180)



#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# Year 1979: V and B moments and PDFs



PDF of module – comparison with a  $\chi^2$  distribution. High intermittency?

- Evidence of high **Ku**(> 3)
- origin of "intermittency": advected coherent structures (flux tubes, etc), stochastic Alfvénic fluctuations generated at solar corona and "frozen" in the wind?

Sac

• Intermittency interests a broad range of scales

### Autocorrelations

#### Introduction

Turbulence in the solar

wind, spectra from Voyager 2 data

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions





▲ロト ▲周ト ▲ヨト ▲ヨト 三ヨ - のくや

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



### Cross-correlations tensor: off-diagonal terms



▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - 釣ん(で)

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method





### Cross-correlations tensor: diagonal terms



### Summary:

- Averages are computed on 57970 points for V, and 124080 points for B, spanning the whole 180 days period
- Evidence of a 25 days periodicity. Minimum of solar activity in 1979
- High cross-correlation  $V_R B_R \rightarrow \text{not in-phase}$
- High cross-correlation  $V_R B_T \rightarrow \text{not in-phase}$
- Low Alfvénic one-point correlation (this is often the case in the slow-wind periods)

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



### Data reconstruction techniques

V2 velocity and magnetic field data are discontinuous and irregularly spaced. In the whole year 1979 there is 45% of missing velocity data, These values are about 97% in 2012. To perform an accurate spectral analysis on these kind of data sets, a reconstruction technique may be mandatory. In the following, the effect of two interpolation/recovery methodologies on averaged turbulent spectra will be discussed.

- Linear interpolation
- Maximum likelihood reconstruction and realizations constrained by data<sup>1</sup>

<sup>1</sup>Rybicki & Press, ApJ 398, 1992

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



## Data reconstruction techniques: test

To test the effects of averaging, interpolating and windowing techniques, two 1D sequences of synthetic turbulence data have been generated from imposed spectral properties:

• Synt 
$$1 \to E_{3D}(n/n_0) = \frac{(n/n_0)^{\beta}}{(n/n_0)^{\alpha+\beta}}$$
  
• Synt  $2 \to E_{3D}(n/n_0) = \frac{(n/n_0)^{\beta}}{(n/n_0)^{\alpha+\beta}} \left[1 - exp(\frac{n-n_{tot}}{\gamma} + \epsilon)\right]$ 

 $\beta=2,\,\alpha=5/3,\,n_0=11,\,\gamma=10^4,\,\epsilon=10^{-1}$ 

Synt 1 mimics the Kolmogorov inertial range of fluid turbulence, Synt 2 mimics both the inertial and the dissipative part of the spectrum.

- Synthetic data are scaled on a 180 days time grid (<br/>  $\Delta t = 100~s,$   $n_{tot} = 155520)$
- The same gaps of V2 velocity data are projected on these sequences

うして ふむ くは く む く む く し く

• Spectral analysis is carried out.

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# Effect of interpolation on Synt 1 data



▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへで

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# Effect of interpolation on Synt 2 data



- Effect of segmentation: increase in slope of about 5% in the inertial range .
- Effect of linear interpolation: function of  $L_g$  (length of "filled" gaps). This interpolation transfers energy to the low frequences, resulting in an increase (about 6%) in the slope, especially in the high-frequency range ( $f > 10^{-3}$ Hz).

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



## Effect of interpolation on Synt 2 data

• Effect of windowing: the Hann window function allows to eliminate spurious energy due to discontinuities ( $\approx 1/f$ ) at the boundary of each segment. The effect is minimal at low wavenumbers. In the high-frequency range, on the one hand a significant increase ( up to 23%) of the slope is found to be a function of  $L_g$ , on the other hand any change in slope of the real spectrum can be followed.

Energy correction factor for Hann:  $1.63^2$ 

• Without windowing, the segmentation error doesn't allow to represent the correct slope, in the general case (see the analysis on **Synt 2** data). These cases can be recognized by a flattening in the high-frequency range of the spectrum. Averaging long segments helps.

# V2 velocity spectra at 5 AU (pre-Jupiter)



Sac

Turbulence in the solar wind, spectra from Voyager 2 data

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions





Introduction

Solar wind statistics from V2 data (year 1979, days 1, 180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



・ロト ・四ト ・ヨト ・ヨト

Sac

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# V2 mag. field spectra at 5 AU (pre-Jupiter)



996

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions





500

### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



### Velocity:

- The observed frequency range constitute the inertial range
- • All computed exponents ( $10^{-4} < f < 2 \cdot 10^{-3}~{\rm Hz})$  are flatter than the Kolmogorov one:

V2 spectra at 5 AU (pre-Jupiter)

 $\alpha = -1.53 \pm 0.07$ 

- Computed slopes may be slightly overestimated
- A peak is located at f = 0.0026 Hz for T and N components: is it physical or instrumentation-related? (no relation with  $f_{ci}, f_{pi}, f^*$ ))

### Magnetic field:

• Computed exponents  $(10^{-4} < f < 2 \cdot 10^{-3})$  higher lower than the velocity ones:

 $\alpha = -1.81 \pm 0.09$ 

• Observed steepening for  $f > 3 \cdot 10^{-3}$  Hz should not be linked to interpolation issues: the situation recalls that of **Synt 2** case, blue (no recovery) and violet (small gaps filled) give the same result.

ъ.

Sac

• Anisotropy is higher with respect to the velocity field  $\langle \Box \rangle = \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$ 

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

Conclusions



# G.B. Rybicki &W.H. Press prediction

• Minimum variance prediction (interpolation):

 $oldsymbol{y} = oldsymbol{s} + oldsymbol{n}$  irreg. spaced vector data with errors  $oldsymbol{n}$   $s^* = \sum_{i=1}^M d_{*i}y_i + x_*$   $s^*$  =true value at a particular point  $\hat{s^*} = \mathbf{S}^T [\mathbf{S} + \mathbf{N}]^{-1} \mathbf{y}$   $\hat{s^*}$  =min. variance estimate for  $s^*$ 

Assuming stationary process:

 $S_{ij} = \langle s_i s_j \rangle = f(t_i - t_j)$  is the correlation matrix, estimated from data  $N_{ii} = \langle n_i^2 \rangle$  is the errors diagonal matrix  $n_i \to \infty$  in "new" points The min. variance estimation is not, however, a typical realization of the underlying process.

### • Minimum variance prediction + Gaussian process

To obtain a typical realization, a Gaussian process is added to the min. var. estimate:

 $s_* = u_* + \hat{s_*}$ 

If realizations constrained to data are desired:

$$\begin{split} \boldsymbol{u} &= \boldsymbol{V} diag(\lambda_1^{1/2},...,\lambda_M^{1/2}) \boldsymbol{r} \text{ where} \\ \lambda_i &= eig(\boldsymbol{Q}), \quad \boldsymbol{Q} = [\boldsymbol{S}^{-1} + \boldsymbol{N}^{-1}]^{-1}, \quad \boldsymbol{r} = rand(\mu = 0, \sigma^2 = 1) \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

### R&P reconstruction



Turbulence in the solar wind, spectra from Voyager 2 data

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V: velocity and mag. field data

Rybicki &Press prediction method

Conclusions

(日) (四) (三) (三) (三)

5 9 9 C

#### Introduction

Solar wind statistics from V2 data (year 1979, days 1-180)

Spectral analysis: methodology and validation

Spectral analysis: synthetic turbulence

Spectral analysis: V2 velocity and mag. field data

Rybicki &Press prediction method

#### Conclusions



## Final considerations and future development

- V2 data: it is possible to obtain spectra from incomplete data (at least at 5 AU!)
- velocity spectra support the MHD cascade model (Iroshnikov–Kraichnan, -3/2 exponent):  $-1.53 \pm 0.07$  exponent
- magnetic field spectra much steeper than velocity ones  $(-1.81 \pm 0.09)$
- peak at  $f = 2.6 \cdot 10^{-3}$  Hz in  $V_T$  and  $V_N$  spectra only: a feature of solar wind structure or an instrumentation problem? (note: Larmor frequency one order of magnitude higher)
- Future work:
  - comparison with V1 data (same exponents and peaks?)
  - analysis of the much challenging *Heliosheath* data (V2: 2007-2013, 97% of voids in data; switch to to *compress sensing* reconstruction method from telecommunication engineering.