Direct numerical simulations of injection flows using cylindrical and spherical coordinates

Ionut Danaila

Laboratoire de mathématiques Raphaël Salem Université de Rouen, France *(mrs.univ-rouen.fr/Persopage/Danaila*)

> Paolo Orlandi: *A vortical and turbulent life*, Roma, September 20, 2014.

A D > A B > A B > A B >

Conclusion

IRS

3D numerical codes: coordinates system

I. Danaila's code (CYL) University of Rouen (cylindrical coordinates)

B. J. Boersma's code (SPH) TU Delft, The Netherlands (spherical coordinates)

Outline

Navier-Stokes numerical codes using cylindrical and spherical coordinates

Utility of the DNS of axisymmetric injection flows

- Investigation of the physics of vortex rings
- Improve models for the injection velocity profile
- Application in automotive industry
- New nice mathematical developments
- From fluids to superfluids

4 Conclusion

Outline

Navier-Stokes numerical codes using cylindrical and spherical coordinates

2 Utility of the DNS of axisymmetric injection flows

- Investigation of the physics of vortex rings
- Improve models for the injection velocity profile
- Application in automotive industry
- New nice mathematical developments
- From fluids to superfluids

4 Conclusion

・ロット (雪) (日) (日)

3D numerical codes: equations

- Rai & Moin, JCP, 1991.
- Verzicco & Orlandi, JCP, 1996.
- Orlandi, Kluwer Academic Press, 1999.

Cylindrical coordinates: variables $(q_{\theta} = v_{\theta}, q_r = v_r \cdot r, q_z = v_z, p).$

Navier-Stokes equations

- incompressible $(\operatorname{div} \vec{v} = 0)$
- low Mach number approximation $(M \rightarrow 0)$

Discretization

Mesh : 3D, staggered

- θ and z directions: uniform grid
- *r* direction: stretched grid (cyl coordinates).

A D > A B > A B > A B >

Spatial discretization: second order finite differences. Time integration:

- (CYL) convective terms: 3-steps Runge-Kutta method,
- (CYL) diffusive terms: Crank-Nicolson method,
- (SPH) explicit Adams-Bashfort scheme.

Conclusion

Fractional time step (projection) method

for each step of Runge-Kutta:

momentum equations (ADI factorization)

$$\left(1 - \frac{\alpha_l}{2}\Delta t \mathcal{A}_c\right)\Delta \hat{q}_c^{\prime} = \left[\gamma_l \mathcal{H}_c^{\prime} + \rho_l \mathcal{H}_c^{\prime-1} - \alpha_l \mathcal{G}_c p^{\prime} + \alpha_l \mathcal{A}_c q_c^{\prime}\right]$$

• Poisson equation(FFT in θ + cyclic reduction)

$$\mathcal{L}\Phi^{l+1} = \frac{1}{\alpha_l \Delta t} \, \mathcal{D}\hat{\hat{q}}^{\,l}$$

corrected velocity field

$$q^{l+1} = -\alpha_l \Delta t \mathcal{G} \Phi + \hat{q}^l$$

scalar equation (TVD scheme)

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

(日) (四) (三) (三) (三)

Conclusion

Navier-Stokes equations for low Mach flows

Idea: remove the pressure waves ($\epsilon = \gamma M^2$)

$$\frac{\partial \rho_0}{\partial t} + \nabla . (\rho_0 \vec{v}_0) = \mathbf{0}$$

$$\frac{\partial \rho_0 \vec{v}_0}{\partial t} + \nabla . \left(\rho_0 \ \vec{v}_0 \otimes \vec{v}_0 \right) = -\nabla \rho_1 + \frac{1}{Re} \nabla . \vec{\tau_0}$$
$$\frac{\partial \rho_0 Y_0}{\partial t} + \nabla . \left(\rho_0 \vec{v_0} Y_0 \right) = \frac{1}{ReSc} \nabla . \left(\mu \nabla Y_0 \right)$$

• New equation ($\rho_0 = 1/T_0$):

$$\frac{\partial \rho_0}{\partial t} = -\vec{v}_0 \ \nabla \rho_0 - \frac{1}{T_0} \left[\frac{1}{RePr} \nabla \cdot (\mu \ \nabla T_0) \right]$$

Numerical algorithms for Low-Mach

Different methods, e.g. Adams-Bashforth explicit scheme

start by integrating ρ equation:

$$\frac{\rho^{n+1}-\rho^n}{\Delta t} = \left[\frac{3}{2}F^n - \frac{1}{2}F^{n-1}\right], \ \left(\frac{\partial\rho}{\partial t}\right)^{n+1} = \frac{3\rho^{n+1}-4\rho^n+\rho^{n-1}}{2\Delta t}$$

prediction step

$$\frac{\rho^{n+1}\hat{q}_c - \rho^n q_c^n}{\Delta t} = \left[\frac{3}{2}G_c^n - \frac{1}{2}G_c^{n-1} - \mathcal{G}_c\rho^n\right]$$

correction step

$$\mathcal{L}\Phi = \frac{1}{\Delta t} \left[\mathcal{D}\left(\rho^{n+1}\hat{q}_{c}\right) + \left(\frac{\partial\rho}{\partial t}\right)^{n+1} \right],$$

 $(\rho q_c)^{n+1} - \rho^{n+1} \hat{q}_c = -\Delta t \mathcal{G}_c \Phi$

Outline

Navier-Stokes numerical codes using cylindrical and spherical coordinates

2 Utility of the DNS of axisymmetric injection flows

- Investigation of the physics of vortex rings
- Improve models for the injection velocity profile
- Application in automotive industry
- New nice mathematical developments
- From fluids to superfluids

4 Conclusion

From fluids to superfluids

(日)

Conclusion

Investigation of the physics of vortex rings

The vortex ring as a fundamental flow

• injection of fluid in a quiescent ambiance.

Renewal of fundamental studies:

Gharib et al., JFM, 1998; Kaplanski et al., Phys. Fluids, 2005.

From fluids to superfluids C

Conclusion

Investigation of the physics of vortex rings

Vortex ring simulations

• idea: simulate separately the pipe-flow and the vortex ring

э

Conclusion

Investigation of the physics of vortex rings

Postformation evolution: evolution laws

I. Danaila and J. Hélie, <u>Physics of Fluids</u>, 2008. high resolution \rightarrow good agreement with experiments reconciliate Dabiri et al., JFM, 2004 and Maxworthy, JFM, 1972.

Conclusion

Investigation of the physics of vortex rings

Postformation evolution: fit to ideal vortex models

I. Danaila and J. Hélie, Physics of Fluids, 2008.

Conclusion

Improve models for the injection velocity profile

Accurate model for the inflow boundary condition

- I. Danaila, C. Vadean and S. Danaila, Theor. Comput. Fluid Dynamics, 2009.
- Entrance zone + Fully developed zone

• Inlet zone + Stokes zone

N-S Codes

Utility of the DNS of axisymmetric injection flows

Improve models for the injection velocity profile

New inflow velocity model: DNS vs experiments

$$U_{\text{SDV}}(t,r) = U_{\text{CL}}(t) F_{inj}(t) U_b(r,t),$$
$$U_b(r,t) = \frac{1}{2} \left\{ 1 + \tanh\left[\frac{1}{4\Theta(t)} \left(1 - \frac{r}{R_{jet}(t)}\right)\right] \right\}$$

N-S Codes

Utility of the DNS of axisymmetric injection flows

Conclusion

Improve models for the injection velocity profile

New inflow velocity model: slug-flow models $\Gamma(t)$

$$\Gamma(t) = \frac{U_0^2 R e_{\rm D}}{32\beta^2} \left[\frac{B(t)(B(t) - \alpha)}{(B(t) - \alpha)^2 + \beta^2} + \frac{\alpha}{\beta} \arctan\left(\frac{B(t)\beta}{\frac{1}{2} - \alpha B(t)}\right) \right]$$

Conclusion

Application in automotive industry

pression

Impulsively starting flows

Bio-mechanics, synthetic jet actuators, etc. Injection flow in internal combustion engines

• Diesel injectors. • New type of gasoline injectors : low pressure, with swirl, multi-point, piezo actuated.

(courtesy of Continental Automotive France)

(日)

・ロット (雪) (日) (日)

Application in automotive industry

Vortex rings in internal combustion engines: direct Diesel injection

• Jet collapse: as a result of the opposite-sign vortex interactions (dipoles).

• industrial CFD two-phase flow simulation/ experiment (courtesy Institut Français du Pétrole)

A D > A P > A D > A D >

Application in automotive industry

Vortex rings in internal combustion engines: direct Diesel injection

• Jet collapse: as a result of the opposite-sign vortex interactions (dipoles).

• Academic CFD single-phase flow simulation/ experiment

N-S Codes

Utility of the DNS of axisymmetric injection flows

From fluids to superfluids Conclusion

(日)

New nice mathematical developments

VR problem: mathematical formulation

 $\mathcal{L}\psi$

$$= \frac{\partial}{\partial z} \left(\frac{1}{r} \frac{\partial \psi}{\partial z}\right) + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \psi}{\partial r}\right) = \begin{cases} -r\omega_0 f(\psi), \text{ in } \Omega_0 \\ 0, \text{ in } \Pi \setminus \overline{\Omega}_c, \end{cases}$$

$$\psi \text{ and } \nabla \psi \text{ are continuous across } \partial \Omega_c$$

$$\psi = k \text{ on } \partial \Omega_c, \quad \psi = 0 \text{ on } Oz, \end{cases}$$

$$\psi + \frac{1}{2} Wr^2 \to 0 \text{ when } r^2 + z^2 \to \infty.$$

parameters: $W, k, \omega_0, f(r, \psi).$

Fundamental studies (70' and 80')

- J. Norbury, Proc. Camb. Phil. Soc., 1972.
- L. E. Fraenkel & M. S. Berger, Acta Math, 1974.
- H. Berestycki, E. F. Cara & R. Glowinski, RAIRO, 1984.
- C. J. Amick & L. E. Fraenkel, Arch. for Rational Mech. and Analysis, 1987.

N-S Codes

Utility of the DNS of axisymmetric injection flows

(日)

New nice mathematical developments

VR with fixed elliptic $\partial \Omega_b$: non-trivial solutions

Y. Zhang and I. Danaila, Applied Math. Modelling, 2013.

From fluids to superfluids

Conclusion

New nice mathematical developments

Reconstruction of the velocity field

PIV image (Siemens Automotive)

イロト イポト イヨト イヨト

Difficulties

- the solution is not unique,
- the solution depends on the vortex ring model,
- needs careful set of the matching functional,
- numerics based on non-linear fit procedures.

From fluids to superfluids

Conclusion

New nice mathematical developments

The optimal control problem

Y. Zhang and I. Danaila, J. of Numerical Mathematics, 2012.

$$\begin{split} \min_{\mathbf{X}\in\mathbb{R}^{n}} J(\psi) &= \int_{\partial\Omega_{R}} \left| \frac{1}{r} \left(\frac{\partial\psi}{\partial\vec{n}} - \frac{\partial\psi_{\mathsf{exp}}}{\partial\vec{n}} \right) \right|^{2} \mathrm{d}S \\ \text{subject to} \\ \left\{ \begin{array}{ll} \mathcal{L}\psi &= \omega_{0}f(\mathbf{x},\psi,\mathbf{X}), \quad \text{in }\Omega_{\mathrm{R}}, \\ \psi &= \psi_{\mathsf{exp}}, \qquad \text{on }\partial\Omega_{R}. \end{array} \right. \end{split}$$

(日)

- Find the "best" matching parameters X quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
- vorticity amplitude (vortex intensity) ω_0

$$\Gamma_{\exp} = \int_{\partial\Omega} \frac{1}{r} \frac{\partial \psi_{\exp}}{\partial \vec{n}} \mathrm{d}\boldsymbol{S} = \omega_0 \int_{\Omega} f(\mathbf{x}, \psi, \mathbf{X}) \mathrm{d}r \mathrm{d}\boldsymbol{z}.$$

(日)

New nice mathematical developments

Original approach for the vortex ring reconstruction

I. Danaila and B. Protasz, submitted, 2014.

$$\begin{split} \min_{f \in H^{1}(\Omega_{R})} J(\psi) &= \int_{\partial \Omega_{R}} \left| \frac{1}{r} \left(\frac{\partial \psi(\mathbf{f})}{\partial \vec{n}} - \frac{\partial \psi_{\exp}}{\partial \vec{n}} \right) \right|^{2} \mathrm{d}S \\ \text{subject to} \\ \begin{cases} \mathcal{L}\psi &= \omega_{0} \mathbf{f}(\psi), \quad \text{in } \Omega_{\mathrm{R}}, \\ \frac{\omega}{r} &= \mathbf{f}(\psi). \end{cases} \end{split}$$

• Optimal problem as in shape optimization weighted Sobolev gradient methods for the minimization Numerical algorithm

- validated against Hill and Norbury vortices,
- used for DNS generated vortex rings.

A D > A B > A B > A B >

Outline

- Navier-Stokes numerical codes using cylindrical and spherical coordinates
- Utility of the DNS of axisymmetric injection flows
 Investigation of the physics of vortex rings
 - Improve models for the injection velocity profile
 - Application in automotive industry
 - New nice mathematical developments
- From fluids to superfluids

4 Conclusion

Conclusion

Bose-Einstein condensate

New state of the matter: super-atom Properties: superfluid, super-conductor.

Created in 1995 Nobel Prize 2001

C. E. Wieman (Univ. Colorado) E. A. Cornell (Univ. Colorado) W. Ketterle (MIT, Cambridge)

(日)

Conclusion

Quantized vortices: 3D simulation of real experiments (I. Danaila, Phys. Rev. A, 2003, 2004, 2005.)

Outline

- Navier-Stokes numerical codes using cylindrical and spherical coordinates
- Utility of the DNS of axisymmetric injection flows
 Investigation of the physics of vortex rings
 - Improve models for the injection velocity profile
 - Application in automotive industry
 - New nice mathematical developments
- From fluids to superfluids

Conclusion

Thanks Paolo for the DNS method and code in cylindrical coordinates! They proved useful for many physical and mathematical problems!

Conclusion

Thanks Paolo for the DNS method and code in cylindrical coordinates! They proved useful for many physical and mathematical problems!

